Výzkum
Využíváme metody teorie informace, stochastických procesů, diferenciálních rovnich a statistiky pro popis procesů v nervových systémech na úrovni jednotlivých buněk i jejich populací. Zaměřujeme se především na problém neurálního kódování, matematické modely nervové aktivity, biofyzikální modelování růstu axonů a formování sítí. Výsledky ověřujeme na experimentálních datech a počítačových simulacích.
Organizační aktivity:
Publikace
Lee; H. - Košťál; Lubomír - Kanzaki; R. - Kobayashi; R.
Spike frequency adaptation facilitates the encoding of input gradient in insect olfactory projection neurons
.
Biosystems. 2023; 223(January)); 104802
.
IF = 1.6
[ASEP]
[
doi
]
Lánský; Petr - Polito; F. - Sacerdote; L.
Input-output consistency in integrate and fire interconnected neurons
.
Applied Mathematics and Computation. 2023; 440(1 March)); 127630
.
IF = 4.0
[ASEP]
[
doi
]
Tubikanec; I. - Tamborrino; M. - Lánský; Petr - Buckwar; E.
Qualitative properties of different numerical methods for the inhomogeneous geometric Brownian motion
.
Journal of Computational and Applied Mathematics. 2022; 406(May 1)); 113951
.
IF = 2.4
[ASEP]
[
doi
]
Tomar; Rimjhim - Smith; Ch. E. - Lánský; Petr
.
A simple neuronal model with intrinsic saturation of the firing frequency
.
Biosystems. 2022; 222(Dec)); 104780
.
IF = 1.6
[ASEP]
[
doi
]
Tomar; Rimjhim - Košťál; Lubomír
.
Variability and Randomness of the Instantaneous Firing Rate
.
Frontiers in Computational Neuroscience. 2021; 15(Jun 7)); 620410
.
IF = 3.387
[ASEP]
[
doi
]
Tamborrino; M. - Lánský; Petr
.
Shot noise; weak convergence and diffusion approximations
.
Physica. D. 2021; 418(Apr)); 132845
.
IF = 3.751
[ASEP]
[
doi
]
Bárta; Tomáš - Košťál; Lubomír
.
Regular spiking in high-conductance states: The essential role of inhibition
.
Physical Review E. 2021; 103(2)); 022408
.
IF = 2.707
[ASEP]
[
doi
]
Rajdl; Kamil - Lánský; Petr - Košťál; Lubomír
.
Fano Factor: A Potentially Useful Information
.
Frontiers in Computational Neuroscience. 2020; 14(Nov 20)); 569049
.
IF = 2.380
[ASEP]
[
doi
]
Christodoulou; Ch. - Košťál; Lubomír - Sacerdote; L.
Editorial
.
Biosystems. 2020; 187(Jan)); 104049
.
IF = 1.973
[ASEP]
[
doi
]
Ditlevsen; S. - Rubio; A. C. - Lánský; Petr
.
Transient dynamics of Pearson diffusions facilitates estimation of rate parameters
.
Communications in Nonlinear Science and Numerical Simulation. 2020; 82(Mar)); 105034
.
IF = 4.260
[ASEP]
[
doi
]
Ascione; G. - D´Onofrio; G. - Košťál; Lubomír - Pirozzi; E.
An optimal Gauss-Markov approximation for a process with stochastic drift and applications
.
Stochastic Processes and their Applications. 2020; 130(11); 6481-6514
.
IF = 1.467
[ASEP]
[
doi
]
Tomar; Rimjhim
.
Review: Methods of firing rate estimation
.
Biosystems. 2019; 183(Sep)); 103980
.
IF = 1.808
[ASEP]
[
doi
]
Leváková; Marie - Košťál; Lubomír - Monsempés; Ch. - Lucas; P. - Kobayashi; R.
Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in a moth
.
Journal of the Royal Society Interface. 2019; 16(157)); 20190246
.
IF = 3.748
[ASEP]
[
doi
]
Košťál; Lubomír - Kobayashi; R.
Critical size of neural population for reliable information transmission
.
Physical Review E. 2019; 100(5)); 050401
.
IF = 2.296
[ASEP]
[
doi
]
D´Onofrio; Giuseppe - Pirozzi; E.
Asymptotics of Two-boundary First-exit-time Densities for Gauss-Markov Processes
.
Methodology and Computing in Applied Probability. 2019; 21(3); 735-752
.
IF = 0.809
[ASEP]
[
doi
]
Zobrazit více