Intranet Campus web


Unravelling novel regulatory mechanisms in the human Na+/H+ antiporter NHA2 (14.11. 2022)

Sodium/proton antiporters are membrane proteins found in all living cells from bacteria to humans and play an important role in regulating intracellular pH and cation concentrations. Among these types of transporters belong also the NHA2 antiporter, whose activity affects a number of physiological functions, e.g. insulin secretion, sodium reabsorption in the kidneys or sperm motility. The NHA2 antiporter transports Na+ or Li+ cations across the membrane in exchange for H+ and its activity is specifically inhibited by phloretin. The properties and functions of all proteins result from their primary structure, i.e. from the sequence of amino acids from which the protein consists. In the family of Na+/H+ antiporters, NHA2 has a unique structure. It consists of 537 amino acids with 14 transmembrane domains and an unique hydrophilic N-terminus long 82 amino acid residues, whose structure and function have not yet been studied. Our new results published in the Protein Science journal revealed several new structural elements important for the NHA2’s function, including the unravelling a new regulatory role of the hydrophilic N-terminus.

We studied the human NHA2 protein and its mutated variants using its expression in a model eukaryotic organism, the yeast Saccharomyces cerevisiae, as well as using bioinformatic simulations (in collaboration with the laboratory of Prof. Nir Ben-Tal from Tel-Aviv University). We newly identified several amino acid residues important for antiporter selectivity (recognition and transport of Na+ and Li+ cations) and for transport of protons. Furthermore, we determined the place in the protein structure where the phloretin inhibitor binds. We also revealed that the unique hydrophilic N-terminal part of the protein has an important (autoinhibitory) role in regulating the transport activity of NHA2, because truncations of the first 50 - 70 residues of the N-terminus doubled the transport activity of the antiporter. Our results also show that the new expression system for NHA2 in yeast cells can be useful for a rapid screening of SNP´s effects on NHA2 activity, and/or to test new compounds influencing the function of NHA2, similarly as phloretin.


Velazquez D., Prusa V., Masrati G., Yariv E., Sychrova H., Ben-Tal N. and Zimmermannova O. (2022): Allosteric links between the hydrophilic N-terminus and transmembrane core of human Na+/H+ antiporter NHA2. Protein Sci: e4460. IF = 6.993 DOI

Characterization of novel antidiabetic drug with less side effects on bone metabolism (7.11. 2022)


Thiazolidinediones (TZDs) belong to the category of antidiabetic drugs that increase insulin sensitivity. However, the first generation of TZDs show several side effects, including increased formation of large fat cells (adipocytes) in the bone marrow associated with a higher risk of fractures and bone loss. These side effects are thought to be caused by the strong binding of TZDs to the nuclear receptor PPARγ. In a new study published in the journal Molecular Metabolism, we investigated how administration of MSDC-0602K, a new TZD analog with lower affinity for PPARγ receptors, affects bone metabolism.

We found that administration of MSDC-0602K to obese mice for 8 weeks resulted in significantly better bone microstructure and bone strength, along with an increased proportion of smaller adipocytes in the bone marrow, compared to the original TZDs. We also investigated the effects of MSDC-0602K at the molecular level using primary cell cultures. Bone marrow mesenchymal stem cells from mice treated with MSDC-0602K differentiated to an increased extent into the form of osteoblasts (bone cells), did not undergo as much aging and showed increased cellular metabolism of glutamine, which is important for bone formation (osteogenesis).

Taken together our findings suggests that the new TZD analog could increase insulin sensitivity with less adverse effects on bone quality and mesenchymal stem cell metabolism compared to the original TZDs. Thus, MSDC-0602K could replace older antidiabetic drugs in the treatment of metabolic and bone diseases.

Benova, A., M. Ferencakova, K. Bardova, J. Funda, J. Prochazka, F. Spoutil, T. Cajka, M. Dzubanova, T. Balcaen, G. Kerckhofs, W. Willekens, G. H. van Lenthe, G. Alquicer, A. Pecinova, T. Mracek, O. Horakova, M. Rossmeisl, J. Kopecky and M. Tencerova (2022). "Novel thiazolidinedione analog reduces a negative impact on bone and mesenchymal stem cell properties in obese mice compared to classical thiazolidinediones." Mol Metab 65: 101598. IF = 8.568 DOI

The structure of steroids fundamentally affects their effect at the N-methyl-D-aspartate receptors (20.10. 2022)


N-methyl-D-aspartate receptors (NMDARs) are proteins involved in the regulation of many processes in the mammalian brain. They play a key role in signal transmission between nerve cells, and even a small disturbance in the NMDAR function may have sever pathophysiological effects. A reduced function of NMDARs is associated with neuropsychiatric disorders such as mental retardation, reduced intellect, schizophrenia, autism spectrum disorders, epilepsy, or motor disorders. The insufficient NMDAR function can be compensated for by numerous compounds, including neurosteroids. However, the mechanism by which neurosteroids potentiate NMDARs is not well understood.

In a study published in the British Journal of Pharmacology, we investigated the effect of newly synthesized synthetic analogues of endogenous neurosteroid pregnanolone sulfate on NMDARs. We demonstrated that analogues with short aliphatic chains, such as pregnanolone carboxylate (PA-Car), inhibit NMDAR responses, whereas analogues with longer aliphatic chains, such as epipregnanolone butyrate (EPA-But), potentiate NMDAR responses. Combining electrophysiology, molecular biology, and computational modelling, we identified the binding site for EPA-But at the transmembrane domain of NMDAR and suggested the mechanism by which EPA-But enhance the NMDAR function.



(A) Left, structure of pregnanolone carboxylate (PA-Car) and epipregnanolone butyrate (EPA-But). Right, graph shows the average effect of PA-Car and EPA-But at NMDAR. (B) Location of the EPA-But binding site at the transmembrane domain of NMDAR. Amino-acid residues that are involved in the interaction with EPA-But molecule (green) are highlighted in red.

Kysilov B, Hrcka Krausova B, Vyklicky V, Smejkalova T, Korinek M, Horak M, Chodounska H, Kudova E, Cerny J, Vyklicky L: Pregnane-based steroids are novel positive NMDA receptor modulators that may compensate for the effect of loss-of-function disease-associated GRIN mutations. British Journal of Pharmacology, (2022) 179:15, 3970–3990, IF = 9.473,  DOI

Ion channel TRPC5 as a target for treating neuropathic pain (19.10. 2022)

Despite great advances in medicine, treatment options for pain states associated with diabetes or chemotherapy-induced neuropathy are still limited. These types of neuropathies are accompanied by cold-induced pain that is very difficult to manage in clinical practice. In fact, the only drug that has successfully undergone clinical trials and demonstrated efficacy for this type of pain so far is duloxetine. This drug is superior to other antidepressants with a similar mechanism of action at managing painful neuropathies, but it is not known why. Interestingly, it has recently been shown that the cold-sensitive TRPC5 ion channel is expressed in human sensory neurons and that inhibition of its activity relieves persistent pain, including neuropathic cold pain.

In our study we asked whether the TRPC5 channel is modulated by duloxetine and may contribute to its analgesic effect. Our electrophysiological measurements showed that TRPC5 channel activity is strongly suppressed by duloxetine. We performed molecular docking and molecular dynamic simulations that identified a potential biding site for duloxetine. Subsequent point mutagenesis validated that the duloxetine molecule resides in a well-known biding pocket on the intracellular side of the TRPC5 transmembrane domain. Slight manipulation of the shape and electrostatic of the binding pocket environment (replacing the amino acid glutamate 418 with alanine) caused a complete loss of the duloxetine effect on voltage-evoked TRPC5 activity. Our results suggest that TRPC5 is a previously unrecognised target for a commonly used, highly effective drug against severe forms of pain. Furthermore, the finding that this TRPC5 inhibitor is widely used and well tolerated provides a scaffold for new pain treatment strategies.



Zimova L, Ptakova A, Mitro M, Krusek J,Vlachova V: Activity dependent inhibition of TRPC1/4/5 channels by duloxetine involves voltage sensor-like domain, Biomedicine & Pharmacotherapy. Roč. 152, August 2022, 113262, IF = 7,419, DOI

New lipid classes in human breastmilk (29.7. 2022)


Breastfeeding is the best way of nutrition for a newborn baby. Mother's milk provides the ideal cocktail of nutrients and bioactive components for rapid growth and development in this early period of human life. Milk composition can be affected by several factors such as maternal dietary habits, mode of delivery, and pregnancy length. An essential question for neonatologists is just the optimal composition of breastmilk for premature babies. 

In our study, we investigated the impact of preterm birth and a cesarean section on the quality of the first form of milk – colostrum. Analysis of the samples obtained from mothers at the Institute for the Care of Mother and Child in Prague showed that both the mode and term of delivery slightly negatively affected the composition of colostrum. In these cases, the mammary gland of mothers did not have enough time to initiate fully-fledged milk production. Still, this negative effect disappears in time, and mature milk composition resembles the milk of mothers who delivered spontaneously in term.

Moreover, we discovered a peculiar class of lipids called triacylglycerol estolides in all milk samples, which serves as a reservoir of the antiinflammatory lipids. We found out that the milk enzyme carboxyl ester lipase can digest these complex molecules and release substances with beneficial effects on the health of newborns.


Brejchová K, Palůchová V, Březinová M, Čajka T, Balas L, Durand T, Křížová M, Straňák Z, Kuda O: Triacylglycerols containing branched palmitic acid ester of hydroxystearic acid (PAHSA) are present in the breast milk and hydrolyzed by carboxyl ester lipase, Food Chemistry. 2022; 388(Sep 15)); 132983, IF = 9.231 DOI

Maternal rhythmic behavior supports the development of the fetal biological clock (27.5. 2022)

Before the fetal internal biological clock in the suprachiasmatic nuclei (SCN) of the hypothalamus begins to tick, the rhythmic behavior of the mother affects the function and development of this structure. This was found in a new study published by the team of Alena Sumová from the Institute of Physiology of the Academy of Sciences of the Czech Republic on May 24 in the journal PLOS Biology. This discovery contributes significantly to the understanding of the development of the internal clock and may find application in the treatment of premature babies.

The SCN are the central clock in our body, driven by the rhythmic switching on and off of the clock genes. The rhythmic activity of clock genes in SCN cells controls the activity of many other genes locally and elsewhere in the body, which ultimately affects a wide range of circadian rhythms in behavior, including food intake and sleep. However, this autonomous rhythmic gene activity of the SCN begins relatively late in fetal development, which raises the question of whether maternal signals may affect the gene activity in the SCN before it develops.

To investigate this question, the authors compared the daily gene activity profiles in SCN from fetuses developing in pregnant rats kept in the constant darkness under two different conditions. The control group of mothers had intact SCN and free access to food, while the other group of mothers had SCN surgically removed and had limited access to food for eight hours a day so that their locomotor activity showed a circadian rhythm even in the absence of a central clock. Using biostatistical analyzes they found that in the SCN of the fetuses of both groups, there was a small set of genes whose timing differed between the two groups, and a much larger set of genes whose activity oscillated in synchrony. Many of these genes could be assigned to two major neuronal processes, reflecting in the first case the ongoing development of the SCN and in the second case the earliest manifestation of their function. The data suggest that in the development of fetal SCN, maternal stimuli can replace the missing intercellular synaptic communication and control the rhythms of cell populations before the SCN clocks fully mature. The unexpected extent and specificity of SCN cell responses to maternal signals underlines the importance of a functioning maternal biological clock during pregnancy and points to the potential impact of the absence of such signals in preterm infants.

Greiner P., Houdek P., Sládek M., Sumová A.: Early rhythmicity in the fetal suprachiasmatic nuclei in response to maternal signals detected by omics approach. PLOS Biology; DOI, IF 8.029 Published: May 24, 2022  

New findings on the structure of the FOXO4: p53 complex - a key factor in senescence regulation (22.4. 2022)

Transcription factor p53 protects cells against tumorigenesis when subjected to various cellular stresses. Under stress conditions, p53 interacts with another transcription factor, FOXO4 (Forkhead box O 4), and together they increase the production of p21 protein, which triggers the process of cell aging (senescence). However, the molecular mechanism of upregulation of p21 transcription is still unclear. In the study published in the Protein Science journal, scientific teams of Dr. Obsilova (IPHYS CAS), prof. Obsil (Faculty of Science, Charles University and IPHYS CAS) and their colleagues from IOCB CAS characterized interactions between p53 and FOXO4 at the molecular level. New knowledge about the structure of the complex may enable the development of specific inhibitors of the interaction between these two proteins, and subsequently in the development of new drugs aimed at the selective elimination of senescent cells.

In this structural study, the researchers performed a detailed characterization of the interactions in the FOXO4: p53 complex using an integrated approach involving analytical ultracentrifugation, nuclear magnetic resonance, and chemical cross-linking coupled to mass spectrometry. Because both FOXO4 and p53 have multiple domains (see Figure), they studied the role of individual domains and disordered segments of both proteins and mapped their interaction interfaces. They found out that the interaction between p53 transactivation domain TAD and the FOXO4 Forkhead domain is crucial for the overall stability of the p53:FOXO4 complex. Furthermore, contacts involving the N-terminal disordered FOXO4 segment, the C-terminal negative regulatory domain of p53, and the DNA-binding domains of both proteins stabilize the complex formation. By measuring DNA binding, they further found that the p53: FOXO4 complex formation blocks p53 binding to DNA without affecting the DNA-binding properties of FOXO4.


Left, sedimentation velocity analytical ultracentrifugation analysis of interaction between FOXO4 and p53. Middle, chemical shift perturbations obtained from 1H-15N HSQC spectra of 15N-labeled FOXO4 in the presence of p53 mapped onto the crystal structure of the FOXO4 DBD:DNA complex. Right, fluorescence anisotropy measurements showing that the complex formation reduces the DNA-binding affinity of p53.

Mandal R, Kohoutova K, Petrvalska O, Horvath M, Srb P, Veverka V, Obsilova V and Obsil T. FOXO4 interacts with p53 TAD and CRD and inhibits its binding to DNA. Protein Sci. roč. 31, č. 5 (2022), č. článku e4287. IF = 6.725. DOI

Metabolomics atlas of a mouse (14.1. 2022)

An oral glucose tolerance test (OGTT) is the most commonly used method to diagnose diabetes mellitus from a drop of blood. It measures the ability of an organism to clear circulating glucose after ingestion of glucose bolus after an overnight fast. Although the dynamics of the blood glucose levels during the OGTT are well known, much less information about the metabolic changes in the target organs and the inter-organ communication are available. In our study, we investigated what is the fate of the sugar molecules in each organ and how it affects metabolic pathways in the body. Therefore, we performed the OGTT in mice using glucose with stable isotopic tracers (13C), analyzed 13C6-glucose tissue distribution and time profiles of metabolites and lipids across 12 organs and plasma. We found, that during the OGTT, the glucose use is turned on with specific kinetics at the organ level, but fasting substrates like β-hydroxybutyrate are switched off in all organs simultaneously. Timeline profiling of 13C-labeled fatty acids and triacylglycerols across tissues suggests that brown adipose tissue may contribute to the circulating fatty acid pool at maximal plasma glucose levels. We have created a virtual interactive atlas of metabolites (sugars, amino acids, lipids, etc.), which describes the interactions between organs after ingesting grape sugar. Metabolic fate of ingested glucose carbons was followed in 12 organs and plasma.

Visit the web application to explore virtual mouse metabolome yourself.

Lopes M, Brejchova K, Riecan M, Novakova M, Rossmeisl M, Cajka T, Kuda O. Metabolomics atlas of oral 13C-glucose tolerance test in mice. Cell Rep. 2021 Oct 12;37(2):109833. DOI. PMID: 34644567 IF = 9,423

The effectivity of opioid analgesics is reduced by CCL2 chemokine (8.12. 2021)

Opioid analgesics are the standard of care in the treatment of serious painful states. Treatment of neuropathic pain states, induced by damage to the nervous system, is especially difficult and opioid analgesics often do not have a beneficial effect. It was shown before that neuropathic states are accompanied with neuroinflammatory changes in the spinal cord and the level of different signaling molecules such as chemokine CCL2 is increased. This work shows that chemokine CCL2 is one of the important factors significantly reducing the effectivity of analgesics acting through opioid receptors. It acts probably directly on neurons and also through activation of microglial cells. Analgesic treatment with opioids has also number of serious unwanted side effects. One of them is a paradoxical increase of sensitivity, hyperalgesia/pain after opioids administration. This work shows that this hyperalgesia may be related to TRPV1 receptors activation. These published results suggest that to improve pain treatment with opioid analgesics, modulation of CCL2 and TRPV1 receptors may be needed, especially in cases of neuropathic pain.    

The inhibition of the opioid agonists induced reduction of painful/nociceptive signaling in the spinal cord dorsal horn by the CCL2 chemokine. The control blue line demonstrates the inhibition of the nociceptive synaptic signaling after the DAMGO application and later (in about 13minutes) its potentiation. DAMGO is µ opioid receptors agonist and simulates thus application of opioid analgesics. The analgesic effect of DAMGO application is completely reversed in the presence of CCL2 chemokine (red line). The purple line demonstrates that the effect of CCL2 is dependent on microglia cells activation as it is prevented by microglia inhibitor minocycline.

Chemokine CCL2 preventsopioid‑inducedinhibitionofnociceptivesynaptictransmission in spinalcorddorsalhorn. Mario Heles, Petra Mrozkova, Dominika Sulcova, Pavel Adamek, Diana Spicarova and Jiri Palecek, JournalofNeuroinflammation (2021) 18:279, DOI, IF=8.23

Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20 Praha 4, Czech Republic

Gliflozins - more than just antidiabetics (8.12. 2021)

Gliflozins are commonly prescribed for the treatment of diabetes (patients may know e.g. empagliflozin under the brand name Jardiance). Gliflozins inhibit the activity of sodium-glucose transporter in kidneys, which leads to higher glucose excretion in urine and normalization of blood glucose levels. Besides alleviation of hyperglycemia, other beneficial effects were observed in patients taking gliflozins, including decreased body weight, reduced blood pressure or improved kidney function. How this is possible? Here comes the right time to take a step backwards and to look once again and in greater detail on gliflozins effects in rodent models. And that is exactly what dr. Vaneckova and her colleagues from IKEM and departments of IPHYS are doing. They characterized the effects of empagliflozin in various non-diabetic rodent models prone to hypertension (Ren-2 transgenic rats; TGR) and lipid imbalance (hereditary hypertensive rats). Although the details of treatment effects vary among the individual models, empagliflozin generally attenuated inflammation, and normalized plasma and tissue lipid levels. In addition, it inhibited the activity of sympathetic nervous system, which resulted in a decrease of blood pressure in TGR. Hopefully, this and similar findings will allow to extend the use of gliflozins in the future to more diagnoses than just diabetes. 


Hojná S, Rauchová H, Malínská H, Marková I, Hüttl M, Papoušek F, Behuliak M, Miklánková D, Vaňourková Z, Neckář J, Kadlecová M, Kujal P, Zicha J, Vaněčková I. Antihypertensive and metabolic effects of empagliflozin in Ren-2 transgenic rats, an experimental non-diabetic model of hypertension. Biomed Pharmacother. 2021 Dec;144:112246. Epub 2021 Oct 1. IF-5,98, DOI

Targeted modulation of NMDA receptors is a key for the effective treatment of neurological and neurodevelopmental diseases (14.10. 2021)

N-methyl-D-aspartate (NMDA) receptors are glutamate-gated ion channels critically involved in excitatory synaptic transmission that play a key role in learning and memory. Impaired NMDA receptor function leads to major neurological, neurodevelopmental and psychiatric disorders such as schizophrenia, autistic spectrum disorder, epilepsy or Alzheimer's disease. For an effective design of novel drugs capable of specifically modulating NMDA receptors, it is essential not only to understand the NMDA receptor atomic structure, but also to uncover the specific sequence of conformational changes that are involved in receptor activation and allosteric modulation.

We used single-molecule FRET to identify and quantify the sequence of conformational changes in the amino-terminal domain of the NMDA receptor during its activation. Next, we uncovered distinct roles of receptor subunits in receptor activation, and last but not least, we have identified the molecular mechanism of receptor modulation by pH during pathophysiological conditions such as stroke. 

Vyklický, Vojtěch Stanley, Ch. - Habrian, Ch. - Isacoff, E. Y. Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation. Nature Communications. Roč. 12, č. 1 (2021), č. článku 2694. ISSN 2041-1723. E-ISSN 2041-1723, IF: 14.919, rok: 2020, DOI  

Structural basis of heat-induced opening of TRP channels (12.10. 2021)

TRPV3 is an ion channel involved in the detection of temperature changes, pain, itching, skin barrier maintenance, wound healing and hair growth. Disturbances in its function are the cause of many serious human skin diseases, including the genodermatosis known as Olmsted syndrome, atopic dermatitis, rosacea and psoriasis. An international team of scientists led by Prof. Alexander Sobolevsky (Columbia University, New York, NY, USA), in collaboration with scientists from the Institute of Physiology of the Czech Academy of Sciences in Prague, has identified how the TRPV3 channel is altered by heat and determined the molecular basis of its activation. The study shows that opening of TRPV3 by temperatures exceeding the physiological threshold (higher than 40 °C) involves changes in the secondary structure of specific regions of the channel protein complex, but also active participation of membrane lipids. The result is an important contribution to the understanding of the general molecular mechanisms of thermal activation of TRPV channels and a prerequisite for the search for possible approaches to their pharmacological regulation. The importance of the research on these remarkable protein complexes is evidenced by the recent award of the 2021 Nobel Prize in Physiology or Medicine to two American scientists, David Julius and Ardem Patapoutian.


Left: transition between open and closed states of TRPV3 subjected to temperature cycles. Structures were obtained by Cryo-EM. Right, structural transitions between closed, sensitized and open states. Dynamic regions are highlighted in pink, the elements undergoing the strongest structural changes are highlighted in dark pink.

Nadezhdin, K. D. - Neuberger, A. - Trofimov, Yu. A. - Krylov, N. A. - Sinica, Viktor - Kupko, N. - Vlachová, Viktorie - Zakharian, E. - Efremov, R. G. - Sobolevsky, A. I. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nature Structural & Molecular Biology. Roč. 28, č. 7 (2021), s. 564-572. ISSN 1545-9993. E-ISSN 1545-9985, IF: 15.369, rok: 2020, DOI

New findings may help to improve diagnostic methods for breast cancer (23.8. 2021)

2-hydroxyglutarate (2HG) is a metabolite resembling normal cell metabolite 2-oxoglutarate (2OG), however, its accumulation in cells might lead to amplification of processes in cancer development. R-2HG is a product or bi-product of several metabolic enzymes, including mitochondrial ones. We investigated whether production of mitochondrial 2HG is elevated in breast cancer cell lines and identified active competition for initial substrate, 2OG, between enzymes isocitrate dehydrogenase IDH2 and alcohol dehydrogenase ADHFE1. We have also investigated possible substrate and cofactor NADPH channeling between the two IDH2 molecules within mitochondria. We characterized several situations when either IDH2 and ADHFE1 produce a non-negligible amount of 2HG, which is then actively exported from cells. This can serve as a basis for clinical application of our findings. We have therefore quantified 2HG levels in the urine of breast carcinoma patients after resection of their tumors and showed a positive correlations between cancer stages and 2HG levels. Note that cancer stages I to IV differ by the existence, localization and severity of metastases.  A future extension of these findings might help to improve diagnostic approaches of breast carcinoma.

Špačková; Jitka - Gotvaldová; Klára - Dvořák; Aleš - Urbančoková; Alexandra - Pospíšilová; K. - Větvička; D. - Leguina-Ruzzi; Alberto A. - Tesařová; P. - Vítek; L. - Ježek; Petr - Smolková; Katarína . Biochemical Background in Mitochondria Affects 2HG Production by IDH2 and ADHFE1 in Breast Carcinoma . Cancers (Basel). 2021; 13(7)); 1709 . IF = 6.639 [ASEP] [ DOI ]

Palmitoylation controls NMDA receptor susceptibility to neurosteroids (3.5. 2021)

N-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors that are crucial for synaptic transmission, learning, and memory acquisition. Their overactivation leads to pathology associated, for example, with stroke or Alzheimer's disease. Overactivation of NMDA receptors can be inhibited by a number of substances, including neurosteroids.

Using electrophysiological and molecular-biological techniques, we have elucidated the molecular mechanism by which NMDA receptor susceptibility to inhibitory neurosteroids is increased. This change is due to depalmitoylation of three cysteines (C849, C854, C871) in the intracellular part of the GluN2B receptor subunit, which occurs after a transient increase in intracellular concentration of Ca2+. Beyond the pharmacological consequences, depalmitoylation of the receptor results in a change in kinetic parameters in favor of the closed state. Increased sensitivity of NMDA receptors to inhibitory neurosteroids is thus another of the neuroprotective mechanisms that prevents excitotoxic damage to nerve tissue.

Hubálková, Pavla - Ladislav, Marek - Vyklický, Vojtěch - Smejkalová, Tereza - Hrčka Krausová, Barbora - Kysilov, Bohdan - Krůšek, Jan - Naimová, Žaneta - Kořínek, Miloslav - Chodounská, Hana -Kudová, Eva - Černý, Jiří - Vyklický ml., Ladislav Palmitoylation Controls NMDA Receptor Function and Steroid Sensitivity. Journal of Neuroscience 2021. 41 (10) 2119-2134, F: 5.674 DOI

Clove oil alleviates cold-induced toothache by blocking the TRPC5 ion channel (30.4. 2021)

Touching a cold drink can be a suffering for us when we have tooth decay. An international team of scientists led by Prof. Katharina Zimmermann (Friedrich - Alexander University Erlangen - Nuremberg in Germany), together with scientists from the Institute of Physiology of the Czech Academy of Sciences in Prague, found out how teeth detect cold and determined the molecular basis of cold-induced dental pain. In both mice and humans, dental cells called odontoblasts contain special cold sensors, the TRPC5 ion channels, which transmit information about a painful stimulus to the nervous system. The study also offers an explanation for why clove oil, which has been used for centuries in dentistry, can alleviate toothache. Clove oil contains a chemical eugenol that blocks the TRPC5 protein and prevents it from activating nerves. Video

Odontoblasts containing the ion channel TRPC5 (green) tightly pack the area between the pulp and the dentin in a mouse’s molar. The cells’ long-haired extensions fill the thin canals in dentin that extend towards the enamel. Sensory nerves are indicated in red (bIII-tubulin). Cell nuclei are stained with Hoechst 33258. (Credit: L. Bernal et al./Science Advances 2021)

Bernal, L. - Sotelo-Hitschfeld, P. - König, Ch. - Sinica, Viktor - Wyatt, A. - Winter, Z. - Hein, A. - Touška, Filip - Reinhardt, S. - Tragl, A. - Kusuda, R. - Wartenberg, P. - Sclaroff, A. - Pfeifer, J. D. -Ectors, F. - Dahl, A. - Freichel, M. - Vlachová, Viktorie - Brauchi, S. - Roza, C. - Boehm, U. - Clapham, D. E. - Lennerz, J. K. - Zimmermann, K. Odontoblast TRPC5 channels signal cold pain in teeth. Science Advances. Roč. 7, č. 13 (2021), č. článku eabf5567. ISSN 2375-2548. IF: 13.117, rok: 2019.  DOI

Nanocellulose as a promising cell carrier for applications in regenerative medicine (8.4. 2021)

Cellulose in the form of a fabric has been used for thousands of years as a traditional wound dressing material. Nowadays, it can be used not only for passive wound covering, but also for active wound healing, e.g. with controlled delivery of various drugs or cells for regenerating the damaged tissue. A suitable form of cellulose for this purpose is nanocellulose, i.e. cellulose in the form of nanofibrils, simulating the architecture of the native extracellular matrix. This form of cellulose is produced by some species of bacteria, or can be isolated from higher plants, including wood. In our experiments, we have focused on the development of “intelligent” wound dressings, capable of delivering skin and stem cells into skin wounds. These dressings are based on electrically-charged cellulose nanofibrils, attached to a microfibrous cellulose fabric. Anionic nanocellulose provided a suitable substrate for the adhesion and growth of human dermal fibroblasts and human adipose tissue-derived stem cells, while cationic nanocellulose provided better support for cell-cell adhesion and for the formation of cell aggregates, which was apparent mainly in fibroblasts (Fig. 1). This difference was due to the preferential adsorption of albumin from the serum supplement of the culture medium, which is non-adhesive for cells, on cationic nanocellulose. However, both types of nanocellulose are useful in regenerative medicine. Anionic nanocellulose is suitable for creating continuous cell sheets, which can be delivered into the wound either spontaneously or after release from the substrate using cellulase enzymes, while cationic cellulose is suitable for creating cell spheroids, i.e. important structures for developing organoids and for tissue engineering.     

Fig. 1 Morphology of normal human dermal fibroblasts (NHDFs; A) and human adipose tissue-derived stem cells (ADSCs; B), guided by the topography of cellulose meshes coated with anionic or cationic cellulose nanofibrils (a600, c600, respectively) after seven days of cultivation. 3D projection of microscopy images (front view and side view) of the cells on the material. F-actin of the cell cytoskeleton is stained in red, vinculin in the cells is stained in green. Confocal microscope with objective magnification 40x.

Pajorova J, Skogberg A, Hadraba D, Broz A, Travnickova M, Zikmundova M, Honkanen M, Hannula M, Lahtinen P, Tomkova M, Bacakova L, Kallio P. A cellulose mesh with charged nanocellulose coatings as a promising carrier of skin and stem cells for regenerative applications. Biomacromolecules, 2020, 21: 4857-4870,; IF = 6.092; DOI

Antidiabetic lipid mediators as neutral lipase substrates (5.1. 2021)

Fat mass is controlled by the balance of triacylglycerol (TAG) degradation and synthesis. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key players in TAG catabolism providing fatty acids (FAs) as energy substrates and metabolic intermediates. In collaboration with colleagues from University of Graz, Université de Montpellier and Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, we discovered that ATGL and HSL metabolize TAGs containing antidiabetic lipid mediators (FA esters of hydroxy FAs), distinctly controlling the release of bioactive lipids. Our paper connects lipolysis-mediated TAG metabolism with the regulation of antidiabetic signaling lipids.

Glycerol-bound FAHFAs in TAG, named TAG estolides, serve as metabolite reservoir of FAHFAs mobilized by lipases upon demand. We found that ATGL alone or co-activated by comparative gene identification-58 (CGI-58) efficiently liberated FAHFAs from TAG estolides with a preference for more compact substrates where the estolide branching point is located near the glycerol ester bond. ATGL was further involved in transesterification and remodeling reactions leading to the formation of TAG estolides with alternative acyl compositions. HSL represented a much more potent estolide bond hydrolase for both TAG estolides and free FAHFAs. FAHFA and TAG estolide accumulation in white adipose tissue of mice lacking HSL argued for a functional role of HSL in estolide catabolism in vivo.


K. Brejchova, F.P.W. Radner, L. Balas, V. Paluchova, T. Cajka, H. Chodounska, E. Kudova, M. Schratter, R. Schreiber, T. Durand, R. Zechner, O. Kuda. Distinct roles of adipose triglyceride lipase and hormone-sensitive lipase in the catabolism of triacylglycerol estolides. Proceedings of the National Academy of Sciences of the United States of America 118(2) (2021) e2020999118. IF = 9.412 DOI

Mitochondrial cardiolipin in adipose tissue as a novel target for treatment of cardiac cachexia (7.12. 2020)

More than a half of deaths in the Czech Republic is due to the cardiovascular disease, with most of the patients suffering from heart failure (HF). Long‐term prognosis of the HF-patients worsens by cachexia, which develops in a subgroup of the patients. Effective treatment of cachexia is missing. In collaboration of scientists at the Institute of Clinical and Experimental Medicine and the Institute of Physiology of the Czech Academy of Sciences in Prague, a study was conducted in advanced HF-patients (n = 52) undergoing heart transplantation. In adipose tissue from the vicinity of the diseased hearts of the cachectic patients, we have demonstrated (i) stronger neurohumoral stimulation of fatty acid (FA) release, and (ii) synthesis of unusual phospholipid cardiolipin (CL 70:6). This phospholipid may deteriorate mitochondrial functions in fat cells and accelerate wasting of the tissue. It could serve as a novel therapeutic target in cachexia.


In HF patients, lipolytic breakdown of triacylglycerols (TAG) in adipose tissue is activated in response to natriuretic peptides (NP), sympathetic nervous system (SNS) and renin-angiotensin-aldosteron system (RAAS). This results in increased release of FA and glycerol into circulation. In body weight-stable patients, the breakdown is balanced by TAG synthesis, which depends on glyceroneogenesis, de novo synthesis of FA (DNL), and FA re-esterification. These reactions require ATP, which is synthesized by oxidative phosphorylation (OXPHOS) linked to β-oxidation of FA in mitochondria. In the cachectic patients, lipolysis is overstimulated, in association with synthesis of CL 70:6 in adipose tissue. This lipid induces uncoupling of OXPHOS and thus inhibits synthesis of ATP, resulting in insufficient replenishment of the TAG pool in fat cells and wasting of adipose tissue.

Janovska P, Melenovsky V, Svobodova M, Havlenova T, Kratochvilova H, Haluzik M, Hoskova E, Pelikanova T, Kautzner J, Monzo L, Jurcova I, Adamcova K, Lenkova L, Buresova J, Rossmeisl M, Kuda O, Cajka T, Kopecky J. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and cardiolipin. Journal of Cachexia, Sarcopenia and Muscle 2020; IF: 9.802 DOI

Neurosteroid pregnenolone sulfate - revealing of its site of action at the N-methyl-D-aspartate receptor (26.10. 2020)

NMDA receptors are ion channels involved in the transmission of electrical signals between nerve cells. Their insufficient function contributes to severe neuropsychiatric disorders such as schizophrenia or autism. NMDA receptor activity can be increased by a variety of compounds, including neurosteroids. In collaboration with the Institute of Organic Chemistry and Biochemistry CAS, we identified the binding site and elucidated the mechanism of action of the naturally occurring neurosteroid pregnenolone sulfate (PES). PES binds to the interface of membrane domains of the NMDA receptor in the closed state, and subsequent activation of the receptor by glutamate leads to a rearrangement of the membrane domains and stabilization of the open state of the NMDA receptor ion channel. These findings may contribute to the development of new drugs for the treatment of diseases associated with the dysfunction of the glutamatergic system.

The interaction of the PES molecule (green) with the membrane domains of the NMDA receptor in the open state was obtained by docking followed by molecular dynamics simulation. Amino acids involved in the interaction with the PES molecule are highlighted in red.

Hrčka Krausová B, Kysilov B, Černý J, Vyklický V, Smejkalová T, Ladislav M, Balík A, Kořínek M, Chodounská H, Kudová E, Vyklický ml. L. Site of Action of Brain Neurosteroid Pregnenolone Sulfate at the N-Methyl-D-Aspartate Receptor. Journal of Neuroscience. 2020; 40 (31) 5922-5936. IF: 5.673 DOI

Dietary supplementation with Krill oil as a novel strategy to improve insulin sensitivity and reduce liver fat accumulation in obesity (20.10. 2020)

Lifestyle interventions including healthy nutrition represent an essential part of prevention and treatment strategies for metabolic sequelae of obesity. Krill oil as an extract from the Antarctic krill Euphausia superba (i.e. crustaceans found in Antarctic waters) is a relatively new source of omega-3 polyunsaturated fatty acids (Omega-3). It has been shown that dietary supplementation with Omega-3, usually as part of a triacylglycerol- or ethyl ester-based concentrate, may reduce inflammation and excessive amounts of fat in the liver (i.e. hepatic steatosis).

However, in obese type 2 diabetic patients, the use of Omega-3 may not necessarily improve insulin sensitivity and may impair long-term control of glucose metabolism. Therefore, we tested in obese mice whether supplementation with Omega-3 using an alternative lipid carrier, i.e. phospholipids from Kril oil, could have beneficial metabolic effects while also improving glucose metabolism and insulin sensitivity.

Our studies showed that Krill oil supplementation was able to reduce hepatic steatosis to a greater extent than Omega-3 given as triacylglycerols, and this effect of Krill oil was associated with improved insulin sensitivity in the liver and at the whole-body level. The beneficial effect of Krill oil on glucose homeostasis was associated not only with the improved bioavailability of Omega-3 (e.g. EPA, n-3 DPA) in tissues, but also with circulating levels of palmitoleic acid, a previously identified lipokine (i.e. hormone of a lipid nature) with insulin-sensitising effects whose content in Krill oil is incerased. In addition, Krill oil more effectively then Omega-3 triacylglycerols induced catabolism of fatty acids from the diet directly in the intestine, which could contribute to its strong antisteatotic effects in the liver. Our findings provide a general rationale for using Omega-3-containing phospholipids as nutritional supplements with potent insulin-sensitizing and antisteatotic effects.

Male C57BL/6N mice were fed for 8 weeks a corn oil-based high-fat diet (cHF) alone or supplemented with Omega-3 contained in triacylglycerols (cHF+ω3TG) or Krill oil phospholipids (cHF+ω3PL); lean controls were fed a low-fat standard chow (A). Administration of cHF worsened insulin sensitivity (determined by measuring the glucose infusion rate during the hyperinsulinemic-euglycemic clamp; B – upper part) and caused significant accumulation of lipids in the liver (i.e. hepatic steatosis; B – lower part). While insulin sensitivity was almost preserved and hepatic steatosis virtually eliminated in cHF+ω3PL mice, much less pronounced effects were observed in cHF+ω3TG mice. Favorable metabolic changes observed after Krill oil administration may be related to increased circulating levels of insulin-sensitizing lipokine palmitoleate (POA; C – upper part) and increased fatty acid catabolism directly in the intestinal tissue (POA; C – lower part).

Rossmeisl M, Pavlisova J, Bardova K, Kalendova V, Buresova J, Kuda O, Kroupova P, Stankova B, Tvrzicka E, Fiserova E, Horakova O, Kopecky J. Increased plasma levels of palmitoleic acid may contribute to beneficial effects of Krill oil on glucose homeostasis in dietary obese mice. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(8):158732. IF: 4.519 DOI

Kroupova P, van Schothorst EM, Keijer J, Bunschoten A, Vodicka M, Irodenko I, Oseeva M, Zacek P, Kopecky J, Rossmeisl M, Horakova O. Omega-3 Phospholipids from Krill Oil Enhance Intestinal Fatty Acid Oxidation More Effectively than Omega-3 Triacylglycerols in High-Fat Diet-Fed Obese Mice. Nutrients. 2020;12(7):2037. IF: 4.546 DOI

Load next